Discontinuous Galerkin Semi-lagrangian Method for Vlasov-poisson
نویسندگان
چکیده
Abstract. We present a discontinuous Galerkin scheme for the numerical approximation of the onedimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme when applied to Vlasov-Poisson test cases.
منابع مشابه
On the geometric properties of the semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equation
The semi-Lagrangian discontinuous Galerkin method, coupled with a splitting approach in time, has recently been introduced for the Vlasov–Poisson equation. Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes. In this paper we study the conservation of important invari...
متن کاملA comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions
The purpose of the present paper is to compare two semi-Lagrangian methods in the context of the four-dimensional Vlasov–Poisson equation. More specifically, our goal is to compare the performance of the more recently developed semi-Lagrangian discontinuous Galerkin scheme with the de facto standard in Eulerian Vlasov simulation (i.e. using cubic spline interpolation). To that end, we perform s...
متن کاملPositivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system
Semi-Lagrangian (SL) methods have been very popular in the Vlasov simulation community [28, 2, 3, 18, 31, 4, 23, 25]. In this paper, we propose a new Strang split SL discontinuous Galerkin (DG) method for solving the Vlasov equation. Specifically, we apply the Strang splitting for the Vlasov equation [5], as a way to decouple the nonlinear Vlasov system into a sequence of linear equations. To e...
متن کاملHigh performance computing aspects of a dimension independent semi-Lagrangian discontinuous Galerkin code
The recently developed semi-Lagrangian discontinuous Galerkin approach is used to discretize hyperbolic partial differential equations (usually first order equations). Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes (which are usually based on polynomial or spline...
متن کاملDiscontinuous Galerkin Methods for the Multi-dimensional Vlasov-poisson Problem
We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that ...
متن کامل